Basic Sparse Matrix Computations on Massively Parallel Computers ∗

نویسندگان

  • W. Ferng
  • K. Wu
  • S. Petiton
چکیده

This paper presents a preliminary experimental study of the performance of basic sparse matrix computations on the CM-200 and the CM-5. We concentrate on examining various ways of performing general sparse matrix-vector operations and the basic primitives on which these are based. We compare various data structures for storing sparse matrices and their corresponding matrix – vector operations. Both SPMD and Data parallel modes are examined and a comparison of the two modes is made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Overview of the CM - 2 and CM - 5 Computers

This paper presents a preliminary experimental study of the performance of basic sparse matrix computations on the CM-200 and the CM-5. We concentrate on examining various ways of performing general sparse matrix-vector operations and the basic primitives on which these are based. We compare various data structures for storing sparse matrices and their corresponding matrix – vector operations. ...

متن کامل

Sparse Matrix Computations on Bulk Synchronous Parallel Computers

The Bulk Synchronous Parallel (BSP) programming model is studied in the context of sparse matrix computations. As a case study, a BSP algorithm is developed for sparse Cholesky factorisation.

متن کامل

Sparse Matrix Computations on Bulk Synchronous Parallel Computers

The Bulk Synchronous Parallel (BSP) programming model is studied in the context of sparse matrix computations. As a case study, a BSP algorithm is developed for sparse Cholesky factorisation.

متن کامل

Drowning in Data A Library for the Solution of Sparse Systems on Distributed Memory Computers

The solution of large sparse linear systems lies at the heart of many calculations in computational science and engineering and is of increasing importance in computations in the financial and business sectors. Today, systems of equations with more than one million unknowns need to be solved. To solve such large systems in a reasonable time requires the use of powerful parallel computers. To da...

متن کامل

New data-parallel language features for sparse matrix computations

High-level data-parallel languages such as Vienna Fortran and High Performance Fortran (HPF) have been introduced to allow the programming of massively parallel distributed-memory machines at a relatively high level of abstraction, based on the Single-Program-Multiple-Data (SPMD) paradigm. Their main features include mechanisms for expressing the distribution of data across the processors of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993